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REACTION DIFFERENTIAL CROSS SECTIONS FROM THE LEAST-SQUARES
UNFOLDING OF RATIO DATA MEASURED IN DIVERSE NEUTRON FIELDS*

by

Donald L. Smith
Applied Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

USA

ABSTRACT

A previously-described procedure for deriving threshold reaction
differential cross sections from integral measurements in well-gpecified
neutron fields by means of least-squares unfolding is extended to the
analysis of ratio data. The following information is required for the
least-squares analysis of ratio data: 1) shape specifications for the
neutron spectra and the associated uncertainties and correlations, 1i)
standard reaction group cross section values and their covariance matrix,
111) the ratio data and their covariance matrix, and 1iv) the a priori
group cross sections and their covariance matrix. Knowledge of the absolute
neutron fluence is not required. In order to illustrate this method, a
special class of ratio measurements is investigated in detail and numerical
analysis is performed for a hypothetical simulated experiment.

*This work supported by the U.S. Department of Energy;



I. INTRODUCTION

The concept of extracting differential cross section information
for a threshold reaction from measured response data for well-characterized
broad-spectrum neutron fields has been described in a previous report (Ref.
1). An important feature of this earlier development {s that the quantities
¢, which collectively provide a group representation for a particular set of
such neutron spectra, must be absolutely normalized.

It is well known that one can more readily determine neutron spectral
shapes than their absolute normalizations. In the more familiar domain of
monoenergetic measurements one often resorts to ratio experiments to
avold the problem of fluence normalization. Consequently, in the present
report the procedure described in Ref. 1 is applied to the analysis of
reaction ratio measurements. The objective here is the same as it was
earlier, namely to improve upon current knowledge of a specific reaction
cross section by performing integral measurements. Now, the integral
spectra need no longer be normalized, although the shapes must be well
known. 1Instead, knowledge of the differential cross section for a
standard reaction is required. |

The formalism required for this approach is developed in Section II.

It is seen that although the algebra is tedious, the methodology is a
straightforward extension of that presented in Ref. 1. 1In order to fully
comprehend the content of the present work, the reader will find it necessary
to refer on various occasions to this earlier work. The symbols here are
altered only to the extent needed to distinguish quantities which are
PhYSically different from those in Ref. 1, although they play corresponding

roles in the formulas from Ref. 1. For convenience, those formulas which



have counterparts in Ref. 1 are often labelled with the equation numbers
from Ref. 1 (in braces {...}) as well as with the sequential equation
numbers of the present report. The greatest challenge in the present
development is in keeping track of appropriate subscripts. The present
development is sufficiently detailed so that the reader can follow most new
steps in the analysis without performing extra algebra to fill the gaps.

The meanings of the general formulas derived in Section II are not
readily transparent. Therefore, a special case is treated in some detail in
Section III to help the reader to understand the material. This case treats
a series of essentially monoenergetic ratio measurements. A corresponding
hypothetical numerical example is also presented in order to demonstrate the

method.

II. FORMALISM

The starting point for the present analysis is Eq. {32} from Ref. 1.
Actually this represents m distinct equations which provide a model that
relates a set of integral responses aj (i = 1,m) to group representations
for m well-characterized spectra &; (1 = 1,m) and the differential cross
section ¢. There, o and all the ¢; are vectors of dimension n. The
vector elements are group values as discussed in Ref. 1.

Here, however, we wish to examine what can be learned about the cross
section o from a set of integral ratio measurements ry (i = 1,m) involving
a second cross section s which is assumed to be a standard. Eq. {32} from
Ref. 1 is not directly applicable in this situation. The ry can be con-
sldered to have been derived from

ry = (ag/by) (1 =1,m) , (1)

where



n

ai - z ¢1ko‘k = °1+ A | (1-1’m) ’ (2) {32}
k=1
n

bi - zzl¢1£ 81 = 01+ *8s (i-lym) . (3) {32}

Here, all the symbols play roles analagous to Ref. l. The bj represent
integral response values for the standard reaction. The 8g (£ = 1,n) are
group cross sections for the standard, and together they form the vector s.
Eq. (1) becomes a problem if any of the b; equal zero. Consequently, the
neutron energy limits (Ey, Ej) and the selected group structure are
established so that the energy interval encompasses the response ranges for
both the cross section we wish to improve (¢) and the standard (8)e We
assume that both reactions have thresholds and that the standard has the
lower threshold. Then none of the by will vanish.

Combining Eqs. (1)-(3) yields the result
1‘1 = (°i+ . 0)/(°i+ * s) (1 = lnm) . (4)

We chose to use the following alternate nomenclature in much of the analysis

below:
IO’i = a4 = (¢1+ *g) (1= lam) ’ (5)

Igy = by = (4% + 8) (1 =1,m) . (6)

Then we can write

n
ry = Ig4/1g4 -kzl(¢1k/131)ok (L1 =1,m) . (7)

If gy (1=1,m) are defined as m vectors with the elements



Vik = ¢1k/Igd

(i = 1,m; k=1,n) . (8)
then *
n
rp= ] Vikog =¥l ‘o (1=1,m . (9)
k=1 '
The yjk serve essentially as normalized group fluxes, with the
normalization constants deduced from response factors for the standard
reaction. The formalism appearing between Eq. {32} and Eq. {54} in Ref. 1
is entirely applicable now, provided that we make the following explicit
substitutions of variables:
¢+ v ,
Ao+ Ry
A+ R ,
Npo * NRo » ) (10)
Np+ N ,
g
¥ 1s the collection of all the yyx and it can be treated either as an (m,n)
matrix or as a vector of dimension q = m x n. There is a one~to—-one re-
lationship between Y and ¢, as is evident from Eq. (8). R, is the vector

of experimental ratio values (m of them), and R represents the corresponding

calculated
Nr are the
additional

There
of Ref. 1;

reproducti

ratios, according to the model defined by Eq. (7). Ng, and
corresponding covariance matrices. Ng and N{ are two

matrices to be defined later in this report.

is no need to repeat the entire development appearing in pp. 11-16
however, the present equivalents to Eqs. {46}—{54} are worthy of

on for they are the formulas actually used in practical analytical



applications. Thus, paraphrasing Ref. 1, we define cij by

n
-y = ] ey (4 = 1,m) , (11)
=1
c1j = ¥149y (i=1,m;3=1,n) .
Then
Ng = N3+ N} (12)
where
+
(Ng)ij - 'l’i * NO d \I’J
n n
= 1 1 vk vy (1,3 = L,m), (13)
k=1 =1

(N{)ij - o-+ . N‘!’:I.j s g

n _n
= 1 1 op (Nyype o (1,3 = 1,m). (14)
k=1 %=1

Ny is an (n,n) matrix while Ny is a (q,q) matrix (remember that
q=mXx n), Nyij is a submatrix of Ny with dimension (n,n); there are
n? such submatrices in Ny. Here, as in Ref. 1, the nomenclature (Q)yy
designates a specific element of any matrix (or submatrix) labelled Q.

A matrix V can be defined by

V = Ngo + Ng = Npo + N + N{; (15)
it has dimension (m,m). This matrix is inverted to yield W (i.e.,

wa=vl),

{46}

{47}

{48}

{49}

{50}



Now, define elements ujj by
n

ugg = 1 (Ny)jk cik/(ogok) (i=1,m; j=1,n) . (16) {51}
=1

‘Then the solution o' and covariance matrix N;' can be calculated using

the formulas

mn m
03 =03 [1 + 1 ) uggvie (rog - rzf] (j=1,n), (17) {52}
k=1 £=1
n m
(Ng)gy = (Ngdgg ~ o305 ] I wiguegwy (1,3=1,n) . (18) {53}
k=1 g=1

The ryy and r; are elements of R, and R, respectively. The wyy are

elements of the inverse matrix W. Also,

m m
X2 = 7 ) (rox - rpdvig (Teg - Ty) - (19) {54}
k=1 =1

Although the formulas are essentially identical to the corresponding
ones in Ref. 1, matters are not quite as simple as they appear. The problem is
that the covariance matrix Ny, or its equivalent collection of submatrices
Ny j (i,j=1,m), is as yet unspecified. These submatrices must be known in
order to evaluate Eq. (14). The remaining job, therefore, is to develop a
formula for the elements (Nyjj)ig in terms of other known quantities.
This problem is a straightforward but tedious exercise in error combination,
as described in Refs. 2 and 3. A good approach is to comnsider the entire set
¥ of elements yik as a single vector of dimension gq=n x m. For any given
pair (i,k) of subscripts which identify an element of ¥, there is a unique a«
which corresponds to it. This unique equivalence relationship is symbolized by
(1,k) = a (i=1,m;k=1,n;a=1,q) . (20)

Thus we can make the explicit symbol exchanges



VYik = Va (1=1,m;k=1,n;a=1,q) (21)
for convenience. By definition, Y depends only on ¢ and s, so

Vo = Vg (9,8) (a=1,q9) . (22)
Here, we also treat ¢ as a vector of dimension q, as discussed above.
The covariance matrix Ny can be calculated according to the uncertainty
combination rules described in Section IV of Ref. 2. Since there are no

correlations assumed between the uncertainties for ¢ and s, we can write
(N¥)ag = (Sae * Eg)* + Co * (Spo * Eg)
(23)
+ (Sag * Eg)* « Cg « (Sgg * Eg) (¢,8 = 1,90 ,
where Su¢, S8¢, Sag and Sgg are sensitivity matrices, Ep and Eg
are uncertainty vectors, and C¢ and Cg are correlation matrices,
according to the definitions from Ref. 2.

As an entirely equivalent alternative to Eq. (23), we consider the
more convenient formula (for present purposes)

(Ny)ag = Zgpt - Np « Zg¢ + Za3+ * Ng * Zgg (a,8 = 1,q) . (24)
Za¢ and Zgy are sensitivity vectors of dimension 9. Zqg and Zgg are
sensitivity vectors of dimension n. Ny is the (q,q) dimension covariance
matrix for ® and Ng 1s the (n,n) dimension covariance matrix for s.

The matrix Ng; must be a part of the input to the problem along with
the standard reaction group cross sections s. The matrix Ny might be
generated as described on p. 16 of Ref. 1, i.e., it might be possible to
calculate it using Eqs. {55}-{57)} from that reference. This leaves us with
only one remaining task, namely derivation of the Z-vectors.

The elements of Zgp are the partial derivatives (344/3¢)) for a=1,q
and A=1,q. For each A there is a unique pair (i',k'). Thus

(1',k') = A ’ (25)



so

_329_ . Wik
3¢\  d¢qrig’

(a,x=1,q) (26)

Referring to Eqs. (5), (6) and (8) one sees that

X
(Zge)a ";;; = 8341 Igq72 (Igg Sk’ = é4k8k')- (27)

Typical elements of the vector Zgg are the partial derivatives (8w3/3¢p)
for 8 = 1,q and p = 1,q. Assuming the subscript equivalence relations

B = (3,8 ’ (28)
and

p=(3',2") ’ (29)
it is readily seen by analogy to Eq. (27) that

31)8
(Zgg)p = F- 643" Isj-z (Igy Sgpr — 6y28¢') (30)
[

Eqs. (25)-(30) together yield an expression for the first term in

Eq. (24):
qQ q 3 ay
+ a ]
Zad' - Ny ° Zgp = Azl pzl(gzx) (Ng)xp (3;;)

m m m n

= 1.21 3'21 k'21 1.21 81176441151 2155 2(Ig16kk ~01k8Kk') (Noi14' )i’ g’

* (Igy Sagr=¢y28g1)

n n
= Isi-zlsj-i,il z'fl(lsi Spk' — ¢1k8k') (Nogjdurar (Igy Sgpr — ¢4485').
(31)



The elements of Zys are the partial derivatives (3

Va/38y1) for
a=1,q and k'=]1 n. Thus,

g )
Gagdet = (—=) == 1,2 410 4y (32)
98y
Likewise for Z3 g we have
g -
(Zgadyr = (——) = - 1,42 032 b3z . (33)
382'
Thus, the second term from Eq. (24) is
Zag* - N_ . 2
n n
= Ig1721g472 § ) P11k’ (Ng)icrg 19 40400 (34)
k'=] g'=]
Eqs. (31) and (34) can be combined with Eq. (24). we also note from the
preceding discusgsion that
(N‘P)GB = (N\yij)kz . (35)
Thus,
n n
(By15)Kq = Ig1™21442 k,El E'Xl [4’ik¢ik'(Ns)k'z'¢j£¢jl'
t (Tg18xk'~p1kskr) (NMJ)k'z'(Isj‘su"‘i’stz')]' (36)

Eq. (36) 1s the general result we have sought. We see that analysis of

ratio data and inclusion of g standard crosgs section leads to considerably

more calculational effort than is required for the topic considered in Ref, 1.
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III. A SPECIAL CASE

Monoenergetic measurements form a subset of the ensemble of all possible
integral measurements. In Ref. 1, no distinction is made between integral
and monoenergetic spectra. None need be made in the present development
either. By monoenergetic we will simply mean that for a particular spectrum
all the neutrons are in a single group. This particular category of problem
was chosen to exemplify the present general method because the outcome is
rather easy to comprehend when compared with a conventional approach to
monoenergetic measurements which is likely to be familiar to most readers.

Consider the following special set of monoenergetic measurements:
o1k = Sikpg (i=l,n5 k=1,n) . (37)

Here, m=n so there is one ratio value for each group considered. Eqs. (2)

and (3) assume the forms
aj = ¢104 (i=1,n) , (38)
b; = ¢184 (i=1,n) , (39)
and Eq. (1) becomes
ry = (ag/by) = o4/84 (i=1,n) . (40)

Eqs. (37)-(40) reflect the obvious fact that for monoenergetic ratio
measurements no knowledge at all of the spectral parameters ¢4 is

required. However, ¥, as defined in Section II, must still be considered.
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This problem, therefore, is only partially degenerate in the context of the

formalism of Section II. In fact,
wik = 61k/si (i-l,n;k-l,n) . (41)

We wish to see what form Ny assumes in this special case. Consider the
general formula expressed in Eq. (36). In general Ny is a (q,q) matrix, as
is Ny, but the reader can easily convince himself (e.g., it can be done
graphically) that for the present special case both Ny and Ny have a true

rank of n, not q. Thus

(Ny13dke = S1k85q (Nygq)y4

(42)
(1,3,k,2=1,n) ’
(Np13dirar = 81318501 (Nogq)y
?1j/k h 3’13 (43)
(1,§,k',2'=1,0) .
Clearly from Eq. (6),
Iy = ¢184 (1=1,n) . (44)

Substitution of Eqs. (41)-(44) into Eq. (36) leads to the expression:

(Nyij)ij = (¢1si)'2(¢jsj)'2[}12(Ns)1j¢j2
t (4181 = ¢181) (Npgj)ij (484 - ¢383)] (45)
(1,j=1,n) ,
since 6y =64y and 6¢3=844 for all 1,j,k and X.
The second term of Eq. (45) vanishes for all i and J, regardless of Ny, as
we know it must. Since Y does not depend upon ¢ in this special case, it is
clear that Ny must not depend upon Ng. Simplifying Eq. (45) yields
(N\yij)ij = 81—2(N3)1j sj—z
(1,j=1,n) , (46)
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80

(N‘l’ij)kl = 511@12 81-2 (Ns)ijsj_z 47)
(i’j ’kyz-l ;n) .

Refer to matrix V defined by Eq. (15). Combining the information in Egs.

(12)-(15) yields

n n
(V)13 = (Ngolyjy + 1Y vix (NgdkeVye
k=] =]

n n
+ 1 1 op(Neggdreoy
k=1 £=] (48)

(1,j=1,n) .
Using Eqs. (41) and (47), this reduces to

(V)14 = (Npoliy + Bi-l(Na)ijsj-l + Oisi‘z(Ns)ij ojsj'z
(i,j=1,n) . (49)

This form of V is the one which is inverted in the least-squares algorithm,
as applied to the present special case.

For this special case, we can also arrive at the same mathematical formulas
using the formalism directly from Ref. 1. Eq. {32} from Ref. 1 takes the

form
ry = (éi)oi (1=1,0) (50)

provided that we make the substitution

¢1J - (511/81) (i=1,n;j=1,n) . (51)

We make the following additional substitutions also:
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€1 = 85y (i=1,n) ’
Vij = 613 (1,3=1,n) ,
foik = 0 (1,k=l,n) ,
(Celie = (Cglig (k,2=1,n) ’
8 Eg=0 (k=l,n) .

Then, from Eqs. {55} and {56} of Ref. 1, we have
Mo13dke = d1kbye (Cedinferfer
= 81k 81716 508571(Ca)p EgyBgy sk ls, 1
= S1idyg Bi-z(Ne)ijsj-z
(i’j’k’z-l,n) »

which is equivalent to Eq. (47). Here, we also utilize the expressions
fer = fgp = Egy/syk (k=1,n) .

(Ng)yy = Eg1(Cg)1j Bgy
(1,3=1,n) R

which follow from standardlformulas gilven in Ref. 2. The code UNFOLD
(Appendix of Ref. 1) cannot be utilized in general for analysis of ratio
results. However, it ig apparent from an examination of Eqs. (50)-(59)
that UNFOLD can be conveniently used for the special case discussed 1in
this section. Therefore, for interest we demonstrate this special case

with a simulated numerical example.

Numerical Example

Consider a ten-group problem (n=m=10). Each group 1s 250 keV broad

and, as required, the groups are contiguous. Let ¢ be the true reaction

(52)
(53)
(54)
(55)
(56)

(57)

(58)

(59)
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group cross section, s the true standard group cross section, and r the
resultant ratios. Specific numerical values appear in Table 1. These values
correspond to perfect (but unattainable) knowledge of the parameters of this
problem.

Assume that values of the ratio r can be measured to 10% accuracy with
7% of the error correlated and 7% random. Thus, the off-diagonal correlations
are 0.5. Based upon this assumption, we wish to generate a simulated set of
"measured” ratio values r,y (i=1,10). First, using a computer random number
generator, we produce a table of random numbers in the interval (0,1) which
is long enough for the present application. Table 2 is this requisite table.
We select random numbers in sequence from this table, as required, and never
use any number more than once. We must decide on the common "bias” factor
for the set of ryj. A correlated uncertainty of £ 7% implies that the
~measured” set could be biased relative to the true ratios (Table 1) by a
factor in the range 0.93 - 1.07. The first random number in Table 2 is
0.0957943794, so this leads to the bias factor 0.94341, Thus, we use the

following formula to generate our “measured” Toi:?
ros = 0.94341 (0.93 + 0.14 Ry)ry (1=1,10), (60)

where the ry come from Table 1 and R through Rjp are the next ten

available random numbers from Table 2. This algorithm superimposes a * 7%

random fluctuation into the generation of the ryj from the corresponding rj.

The final values r,i, representing “measured” quantities, appear in Table 3.
Next, we generate a set of realistic standard cross sections sg,j

which appropriately reflect the imperfect knowledge of the true standard

cross sections, as given in Table 1. The procedure is very similar to the
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one described in the preceding paragraph. For simulation purposes it is
assumed that the standard cross section has a 5% uncertainty with 50%
correlation between groups. This is equivalent to 3.5% systematic plus 3.5%
random error. Using the next available random number from Table 2, which is
0.0125493309, we deduce a bias factor of 0.96588. Thus, the standard cross
sections available for the unfolding procedure are assumed to be given by

the formula
8451 = 0.96588 (0.965 + 0.07 Ri')si (i=1,10) (61)

where the s; come from Table 1 and R;' through Rjp' are the next ten
available random numbers from Table 2. Referring to the monoenergetic
"measured” ratio values Toi and the available standard cross sections

801 (both from Table 3), one can deduce the set of cross sections £,y, also

given in Table 3, from the formula
Eoi ™ ToiSoi (1=1, 10) . (62)

The £,1 are resultant "experimental” cross section values one would normally
deduce from a monoenergetic experiment and available information for the standard
cross section. It is seen that the derived €01 in Table 3 are systematically
lower in general than the corresponding true gy from Table 1. An examination

of Eqs. (60)-(62) readily reveals the reason for this effect. Unfortunately

for our hypothetical experimenter, the particular random numbers used to generate
the bias factors for both I'oi and 8,4 were such that both bias factors

were smaller than unity, leading to a resultant bias factor for the £,4 of
0.91122 (~ 9% low). Such a bias factor is entirely possible given the 7%

systematic uncertainty for the ratios roi and the 3.5% systematic uncertainty
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for the standard cross section. Thus, the £,1 values derived by our
hypothetical experimenter are entirely consistent with his imperfect
knowledge of the standard and the accuracy of his ratio experiment.
No matter how much one may wish matters to be otherwise, one cannot
realistically expect to escape the ravages of uncertainty in any
research endeavor.

Turning now to the least-squares algorithm, we require an a priori
which represents the best available knowledge of 0 before the present
hypothetical investigation. Call o, that a priori, with the group values
0,1 as given in Table 4. Assume each Ogpy has a 25% uncertainty of which
10Z is correlated between all the values. This corresponds to a correlation
parameter of 0.16 between all the a priori values. The least-squares algorithm,
as applied to the present special example, serves to generate essentially
a properly weighted average between the "experimental” cross sections §,4 and
the a priori cross sections Oy3. The uncertainties for the £,y are
derived from the "measured” ratio and available standard cross section
uncertainties. Owing to the correlations, the solution to this problem is
rather more complicated than simple weighted averaging. The results of this
analysis appear in Table 5. The solution group cross section is designated
o', and the solution covariance matrix Ng' provides the information needed
to obtain the errors and correlations which appear in Table 5. This analysis
ylelds a value of 1.507 for x%, well within the acceptable range
of 0.3-2 discussed in Ref. 1.

Fig. 1 summarizes the results of the present analysis in graphical form.
The solution group cross sections ¢' are closer to the true cross section O
than the a priori 0, in most groups, but the results are still rather

disappointing. However, in this hypothetical simulation we know the reason
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for this, based on the preceding discussion. It would be naive to anticipate
better agreement between o' and ¢ in view of the assumed uncertainties in the ratio
measurements and the ilmperfect knowledge of the standard cross sections. 1If
the uncertainties in the “measured” ratios and in the standard cross sections
had been smaller (say < 3%), and if the "measured” ratios and the available
standard cross section values were actually consistent with the true values
within these errors, then the algorithm would have assigned the a priori

0, rather little weight and the solution ¢' would have come much closer to
the true g, Clearly, a good ratio experiment involving a well-known standard
will lead to results which essentially over-ride a much less accurate a
priori result. As discussed in Ref. 1, difficulties might be encountered if
the assumed uncertainty correlations for the a priori were large, and if the
shape of the a priori were quite wrong. Such an eventuality would lead to a
xmz beyond the range 0.3-2, thus providing warning that a serious inconsis-

tency existed in the problem.
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Table 1

Hypothetical True Group Values

Group E48 Range oib 8;¢

! Cev) GeV)  @mb)  (mb)

1 750 625-875 10 100 0.1

2 1000 875-1125 40 140 0.28571
3 1250 1125-1375 80 170 0.47059
4 1500 1375-1625 120 180 0.66667
5 1750 1625-1875 140 186 0.75269
6 2000 1875-2125 150 190 0.78947
7 2250 2125-2375 145 194 0.74742
8 2500 2375-2625 130 198 0.65657
9 2750 2625-2875 120 200 0.6
10 3000 2875-3125 110 202 0.54455

& Group midpoint energy.

b Reaction cross section group valyes.
€ Standard cross section group values.
d ry = (01/81) (1=1,10),
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Table 2

Computer-Generated Random Number Table®

1 .0957943794
2 206700238
3 280750548
4 .65063982
5 .870623822
6 100842989
7 782173608
8 678838465
9 09024649467
10 257296116
11 588115974
12 .0125493309
13 928071414
14 426676491
15 .362051404
16 9033449
17 666980722
18 .878140029
19 .223352529
20 .933383622
21 047625462
22 168465527
23 399603901
24 163556252
25 664763506
26 .835937616
27 701282477
28 457966566
29 .13683168
30 .333691762
31 109179255
32 .212207831
33 10884974
34 .304091252
35 548779062
36 67559223
37 .507522759
38 .343729539
39 0243280515
40 .93795434

4 Random number table for the range (0,1) generated using an
Apple Ile microcomputer.
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Table 3

Hypothetical Available Group Values

Group
L B2 Tat R ey §a1®
1 0.206700238 0.090467 0.928071414 99.482 8.9998
2 0.280750548 0.216127 0.426676491 134,53 35.149
3 0.65063982 0.45332  0.362051404 162.61 73.714
4 0.870623822 0.66158  0.9033449 178.77 118.27
5 0.100842989 0.67041 0.666980722  18].7s 121.85
6 0.782173608 0.77422  0.878140029 188.37 145.84
7 0.678838465 0.72278 0.223352529 183,75 132.81
8 0.0902%49467 0.58388 0.933383622 197.05 115.05
9 0.257296116 0.54681 0.047625462  187.06 102.29

10 0.588115974 0.52007  0.168465527 190.58 99.115

& Random numbers from Table 2 uged in Eq. (60) to calculate o1 values.
b Random numbers from Table 2 used in Eq. (61) to calculate s,; values,

c Eol = roi8o1 (1=1,10).
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Table 4

Hypothetical A Priori Group Cross Sections

Group Ooi
1 (mb)
1 30
2 60
3 90
4 109
5 120
6 120
7 110
8 100
9 90

10 80



Table 5

Solution Cross Sections,

Errors and Correlations

Group E;@ oi'b Error inb Error Correlationgb
1 (keV)  (mb) of' 1 2 3 4 5 6 7 8 9 10
1 750 9.3537 17.6% 1
2 1000 34.995 12.0% 0.41 1
3 1250 71.769 10.7% 0.38 0.42 )
4 1500 111.86 10.1% 0.34 0.40 0.42
5 1750 116.19 10.2% 0.35 0.41 0.42 0.42 1
6 2000 135.68 10.0% 0.33 0.40 0.41 0.42 0.42 1
7 2250 123.69 10.0% 0.33 0.40 0.41 0.42 0.42 0.42 1
8 2500 107.94 10.0% 0.34 0.40 0.42 0.42 0.42 0.42 0.42 1
9 2750 96.133 10.1% 0.34 0.40 0,42 0.42 0.42 0.42 0.42 0.42 1
10 3000 91.916 10.0% 0.33 0.40 0.41 0.42 0.42 0.42 0.42 0.42 0.42 1

8Group midpoint energy,

bSolution from unfolding algorithm,

£z
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Plot of reaction group cross sections for hypothetical
simulation: true cross section (f ), apriori cross
section (®), measured cross section (4), and unfolded
solution cross section (fll). Error bars are not plotted
so as to avoid cluttering the figure.




